Serdica Math. J. 29 (2003), 301-314 APPLICATIONS OF THE FRÉCHET SUBDIFFERENTIAL

نویسندگان

  • M. Durea
  • R. Lucchetti
چکیده

In this paper we prove two results of nonsmooth analysis involving the Fréchet subdifferential. One of these results provides a necessary optimality condition for an optimization problem which arise naturally from a class of wide studied problems. In the second result we establish a sufficient condition for the metric regularity of a set-valued map without continuity assumptions. 1. Preliminaries. Let X be a normed vector space and X its topological dual; we denote by BX , UX , SX the open unit ball, the closed unit ball and the unit sphere of X, respectively. By w and w we mean the weak topology on X and the weak star topology on X. If S is a subset of X we denote by clS the closure of S; if x ∈ X, we denote the distance from x to S by d(x, S) = infy∈S d(x, y) and by dS the distance function with respect to S, 2000 Mathematics Subject Classification: 46A30, 54C60, 90C26.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subdifferential characterization of approximate convexity: the lower semicontinuous case

Throughout, X stands for a real Banach space, SX for its unit sphere, X ∗ for its topological dual, and 〈·, ·〉 for the duality pairing. All the functions f : X → R∪{+∞} are lower semicontinuous. The Clarke subdifferential , the Hadamard subdifferential and the Fréchet subdifferential of f are respectively denoted by ∂Cf , ∂Hf and ∂F f . The Zagrodny two points mean value inequality has proved t...

متن کامل

Enhanced Karush-Kuhn-Tucker condition and weaker constraint qualifications

In this paper we study necessary optimality conditions for nonsmooth optimization problems with equality, inequality and abstract set constraints. We derive the enhanced Fritz John condition which contains some new information even in the smooth case than the classical enhanced Fritz John condition. From this enhanced Fritz John condition we derive the enhanced Karush-Kuhn-Tucker (KKT) conditio...

متن کامل

Subgradients of value functions in parametric dynamic programming q

We study in this paper the first-order behavior of value functions in parametric dynamic programming with linear constraints and nonconvex cost functions. By establishing an abstract result on the Fréchet subdifferential of value functions of parametric mathematical programming problems, some new formulas on the Fréchet subdifferential of value functions in parametric dynamic programming are ob...

متن کامل

Subdifferentials of perturbed distance functions in Banach spaces

In general Banach space setting, we study the perturbed distance function d J S (·) determined by a closed subset S and a lower semicontinuous function J (·). In particular, we show that the Fréchet subdifferential and the proximal subdifferential of a perturbed distance function are representable by virtue of corresponding normal cones of S and subdifferentials of J (·).

متن کامل

Metric Inequality, Subdifferential Calculus and Applications

In this paper, we establish characterizations of Asplund spaces in terms of conditions ensuring the metric inequality and intersection formulae. Then we establish chain rules for the limiting Fréchet subdifferentials. Necessary conditions for constrained optimization problems with non-Lipschitz data are derived.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010